1 ## SURFACE MODIFIED DRUG NANOPARTICLES ## FIELD OF THE INVENTION This invention relates to drug particles, methods for the preparation thereof and dispersions containing the particles. This invention further relates to the use of such particles in pharmaceutical compositions and methods of treating mammals. ## BACKGROUND OF THE INVENTION Bioavailability is the degree to which a drug becomes available to the target tissue after administration. Many factors can affect bioavailability including the dosage 15 form and various properties, e.g., dissolution rate of the drug. Poor bioavailability is a significant problem encountered in the development of pharmaceutical compositions, particularly those containing an active ingredient that is poorly soluble in water. Poorly water solu- 20 ble drugs, i.e., those having a solubility less than about 10 mg/ml, tend to be eliminated from the gastrointestinal tract before being absorbed into the circulation. Moreover, poorly water soluble drugs tend to be unsafe for intravenous administration techniques, which are 25 used primarily in conjunction with fully soluble drug substances. It is known that the rate of dissolution of a particulate drug can increase with increasing surface area, i.e., decreasing particle size. Consequently, methods of mak- 30 ing finely divided drugs have been studied and efforts have been made to control the size and size range of drug particles in pharmaceutical compositions. For example, dry milling techniques have been used to reduce particle size and hence influence drug absorption. However, in conventional dry milling, as discussed by Lachman, et al., The Theory and Practice of Industrial Pharmacy, Chapter 2, "Milling", p. 45, (1986), the limit of fineness is reached in the region of 100 microns (100,000 nm) when material cakes on the milling chamber. Lachman, et al. note that wet grinding is beneficial in further reducing particle size, but that flocculation restricts the lower particle size limit to approximately 10 microns (10,000 nm). However, there tends to be a 45 bias in the pharmaceutical art against wet milling due to concerns associated with contamination. Commercial airjet milling techniques have provided particles ranging in average particle size from as low as about 1 to 50 μm (1,000-50,000 nm). Other techniques for preparing pharmaceutical compositions include loading drugs into liposomes or polymers, e.g., during emulsion polymerization. However, such techniques have problems and limitations. For example, a lipid soluble drug is often required in prepar- 55 surface modifier. Alternatively, the particles can be ing suitable liposomes. Further, unacceptably large amounts of the liposome or polymer are often required to prepare unit drug doses. Further still, techniques for preparing such pharmaceutical compositions tend to be complex. A principal technical difficulty encountered 60 with emulsion polymerization is the removal of contaminants, such as unreacted monomer or initiator, which can be toxic, at the end of the manufacturing process. U.S. Pat. No. 4,540,602 (Motoyama et al.) discloses a solid drug pulverized in an aqueous solution of a water- 65 soluble high molecular substance using a wet grinding machine. However, Motoyama et al. teach that as a result of such wet grinding, the drug is formed into finely divided particles ranging from 0.5 µm (500 nm) or less to 5 µm (5,000 nm) in diameter. EPO 275,796 describes the production of colloidally dispersible systems comprising a substance in the form of spherical particles smaller than 500 nm. However, the method involves a precipitation effected by mixing a solution of the substance and a miscible non-solvent for the substance and results in the formation of noncrystalline nanoparticle. Furthermore, precipitation 10 techniques for preparing particles tend to provide particles contaminated with solvents. Such solvents are often toxic and can be very difficult, if not impossible, to adequately remove to pharmaceutically acceptable levels to be practical. U.S. Pat. No. 4,107,288 describes particles in the size range from 10 to 1,000 nm containing a biologically or pharmacodynamically active material. However, the particles comprise a crosslinked matrix of macromolecules having the active material supported on or incorporated into the matrix. It would be desirable to provide stable dispersible drug particles in the submicron size range which can be readily prepared and which do not appreciably flocculate or agglomerate due to interparticle attractive forces and do not require the presence of a crosslinked matrix. Moreover, it would be highly desirable to provide pharmaceutical compositions having enhanced bioavailabil- ## SUMMARY OF THE INVENTION We have discovered stable, dispersible drug nanoparticles and a method for preparing such particles by wet milling in the presence of grinding media in conjunction with a surface modifier. The particles can be formulated into pharmaceutical compositions exhibiting remarkably high bioavailability. More specifically, in accordance with this invention, there are provided particles consisting essentially of a crystalline drug substance having a surface modifier adsorbed on the surface thereof in an amount sufficient to maintain an effective average particle size of less than about 400 nm. This invention also provides a stable dispersion consisting essentially of a liquid dispersion medium and the above-described particles dispersed therein. In another embodiment of the invention, there is provided a method of preparing the above-described particles comprising the steps of dispersing a drug substance in a liquid dispersion medium and applying mechanical means in the presence of grinding media to reduce the particle size of the drug substance to an effective average particle size of less than about 400 nm. The particles can be reduced in size in the presence of a contacted with a surface modifier after attrition. In a particularly valuable and important embodiment of the invention, there is provided a pharmaceutical composition comprising the above-described particles and a pharmaceutically acceptable carrier therefor. Such pharmaceutical composition is useful in a method of treating mammals. It is an advantageous feature that a wide variety of surface modified drug nanoparticles free of unacceptable contamination can be prepared in accordance with this invention. It is another advantageous feature of this invention that there is provided a simple and convenient method